Low-affinity CCK-A receptors are coexpressed with leptin receptors in rat nodose ganglia: implications for leptin as a regulator of short-term satiety.

نویسندگان

  • Ying Li
  • Xiaoyin Wu
  • Shiyi Zhou
  • Chung Owyang
چکیده

The paradigm for the control of feeding behavior has changed significantly. Research has shown that leptin, in the presence of CCK, may mediate the control of short-term food intake. This interaction between CCK and leptin occurs at the vagus nerve. In the present study, we aimed to characterize the interaction between CCK and leptin in the vagal primary afferent neurons. Single neuronal discharges of vagal primary afferent neurons innervating the gastrointestinal tract were recorded from rat nodose ganglia. Three groups of nodose ganglia neurons were identified: group 1 responded to CCK-8 but not leptin; group 2 responded to leptin but not CCK-8; group 3 responded to high-dose CCK-8 and leptin. In fact, the neurons in group 3 showed CCK-8 and leptin potentiation, and they responded to gastric distention. To identify the CCK-A receptor (CCKAR) affinity states that colocalize with the leptin receptor OB-Rb, we used CCK-JMV-180, a high-affinity CCKAR agonist and low-affinity CCKAR antagonist. As expected, immunohistochemical studies showed that CCK-8 administration significantly potentiated the increase in the number of c-Fos-positive neurons stimulated by leptin in vagal nodose ganglia. Administration of CCK-JMV-180 eliminated the synergistic interaction between CCK-8 and leptin. We conclude that both low- and high-affinity CCKAR are expressed in nodose ganglia. Many nodose neurons bearing low-affinity CCKAR express OB-Rb. These neurons also respond to mechanical distention. An interaction between CCKAR and OB-Rb in these neurons likely facilitates leptin mediation of short-term satiety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cocaine- and amphetamine-regulated transcript is the neurotransmitter regulating the action of cholecystokinin and leptin on short-term satiety in rats.

Vagal CCK-A receptors (CCKARs) and leptin receptors (LRbs) interact synergistically to mediate short-term satiety. Cocaine- and amphetamine-regulated transcript (CART) peptide is expressed by vagal afferent neurons. We sought to demonstrate that this neurotransmitter regulates CCK and leptin actions on short-term satiety. We also examined the signal transduction pathways responsible for mediati...

متن کامل

Leptin action in the forebrain regulates the hindbrain response to satiety signals.

The capacity to adjust energy intake in response to changing energy requirements is a defining feature of energy homeostasis. Despite the identification of leptin as a key mediator of this process, the mechanism whereby changes of body adiposity are coupled to adaptive, short-term adjustments of energy intake remains poorly understood. To investigate the physiological role of leptin in the cont...

متن کامل

Leptin inhibits gastric emptying in rats: role of CCK receptors and vagal afferent fibers.

Leptin regulates energy homeostasis and body weight by balancing energy intake and expenditure. It was recently reported that leptin, released into the gut lumen during the cephalic phase of gastric secretion, is capable of initiating intestinal nutrient absorption. Vagal afferent neurons also express receptors for both CCK and leptin, which are believed to interact in controlling food intake. ...

متن کامل

Characterization of CCK(A) receptor affinity states and Ca(2+) signal transduction in vagal nodose ganglia.

CCK(A) receptors are present on vagal afferent fibers. The objectives of this study were to identify the presence of high- and low-affinity CCK(A) receptors on nodose ganglia and to characterize the intracellular calcium signal transduction activated by CCK. Stimulation of acutely isolated nodose ganglion cells from rats with 1 nM CCK-8 primarily evoked a Ca(2+) transient followed by a sustaine...

متن کامل

Serotonin and cholecystokinin synergistically stimulate rat vagal primary afferent neurones.

Recent studies indicate that cholecystokinin (CCK) and serotonin (5-hydroxytryptamine, 5-HT) act via vagal afferent fibres to mediate gastrointestinal functions. In the present study, we characterized the interaction between CCK and 5-HT in the vagal primary afferent neurones. Single neuronal discharges of vagal primary afferent neurones innervating the duodenum were recorded from rat nodose ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 300 2  شماره 

صفحات  -

تاریخ انتشار 2011